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A point interpolation method with least square strain field (PIM-LSS) is developed for solid mechanics
problems using triangular background mesh. In the PIM-LSS, PIM shape functions are used for displace-
ment field construction that may or may not be compatible, and a least square fitting technique is
adopted to construct the strain field. A strain constructed Galerkin (SC-Galerkin) weak formulation is
then proposed for establishing discretized PIM-LSS models that have a number of special properties.
We proved theoretically (1) the PIM-LSS provides a ‘‘softening” effect to the FEM model, and a ‘‘stiffing”
effect to the node-based smoothed point interpolation method (NS-PIM) model; (2) the exact solution is
bounded from both by PIM-LSS solutions with strain field of zero-order fitting and that with higher order
fitting; (3) There exists a preferred order of fitting for the strain field such that ultra-accurate (one order
higher accuracy) solution can be obtained using the PIM-LSS. These theorems and properties have been
confirmed in numerical examples.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

To solve engineering problems, many powerful numerical
methods have been proposed, such as the Finite Element Methods
(FEM) [1–4], Finite Difference Methods [5,6], Finite Volume Meth-
ods (FVM) [7,8], and recently Meshfree Methods [9–22].

The FEM is well developed, and is currently the most widely
used reliable numerical approach with many commercial software
packages available. Most of FEM models are displacement method
based on the potential energy principle [1,2], and there are also
mixed models based on mixed variational principles [23,24]. The
fully compatible displacement FEM usually produces the overesti-
mation of stiffness matrix known as the ‘‘overly-stiff” phenome-
non, which result in the poor accuracy in the stress of solution
especially when the triangular meshes are used [1,2]. In the past
several decades, many assumed strain methods have been made
in solving these issues in the framework of FEM [25].

On the other hand, meshfree methods offer attractive alterna-
tives to the FEM for many engineering problems, where the treat-
ments on both field function approximation and integration of
the weak form are often different from those in the FEM (see,
ll rights reserved.

matics, Jilin University, 2699
5 6516 4796; fax: +65 6775

u.sg (X. Xu).
e.g. [20,21]). Some of the nodal integrated meshfree methods
based on the standard Galerkin weak form were found spatially
unstable, and a strain smoothing technique has been applied by
Chen et al. [26] to stabilize the nodal integrated Galerkin mesh-
free methods. By combining the existing FEM and the strain
smoothing technique, Liu et al. proposed the smoothed finite ele-
ment method (SFEM) that behaves ‘‘softer” than the FEM model,
and can always produce more accurate solutions [27,28]. The
strain smoothing technique was further generalized to allow the
use of discontinuous shape functions [22], and such generalized
smoothing techniques are used to establish the so-called general-
ized smoothed Galerkin (GS-Galerkin) weak form. The GS-Galer-
kin weak form becomes the foundation for the node-based
smoothed PIM (or NS-PIM) [29] that is always ‘‘softer” than the
FEM model of the same mesh, and can usually offer upper bound
solutions that are particularly useful in obtaining so-called certi-
fied solutions. In addition, an interesting edged-based smoothed
PIM (or ES-PIM) [30] has been formulation where the smoothing
domains are constructed based on edges of the cells, which can
offer a very ‘‘close-to-exact” stiffness matrix and works particu-
larly well for triangular cells. These schemes and techniques can
obtain solutions of high convergences and high accuracy, and
worked very effectively for various problems in science and engi-
neering [31–36].

Recently, some novel schemes of PIM (such as SC-PIM [37]
and PIM-CS [38]) by means of constructing the strain fields have
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been proposed. In these schemes, the problem domain is divided
into triangular cells, over which non-overlapping domains asso-
ciated with nodes are created. Such a nodal domain is further
divided into triangular sub-domains, and the corresponding
strain in each sub-domain is constructed by simple linear inter-
polations using locally smoothed strains at points. These
techniques have led some elegant formulations that produce
superconvergence solutions for both displacements and strain
energy. However, the strain field so-constructed are not smooth
but piecewise linear in each nodal domain. Therefore, smoothed
strains at quite a number of points are needed to construct the
piecewisely linear strain fields, which result in less computa-
tional efficiency.

Thus, a question naturally arises: can we construct an analyti-
cal and one-piece smooth strain field in each nodal domain? The
answer is clearly yes, because we known that strain field con-
structed in the NS-PIM [29] is one-piece smooth in each nodal do-
main. However, the strain field is simply constant in the nodal
domain, and cannot produce very high accurate solutions even if
the higher order displacement models are used [39]. To obtain
more accurate solutions, we need to construct a higher order
strain field in each nodal domain. Note that a nodal domain usu-
ally consists of more sub-domains from different background cells
sharing the same node, and corresponding strain field among sub-
domains is usually different. If the interpolation method is used to
construct the strain field, it will result in much more computa-
tional complexity. Naturally, the least square method becomes
one of the good candidates.

This work develops a point interpolation method with least
square strain field (PIM-LSS): a one-piece smooth strain field
in a nodal domain is constructed using the standard least
square technique. The present PIM-LSS can constructs a higher
order smoothed strain field as desired including the zero-order
approximation used in the NS-PIM, and therefore can be consid-
ered as a high order extension of the NS-PIM with more general
foundation of projection theory. When different order of projec-
tion or fitting is used, it is proven that the solution obtained
using the PIM-LSS is always between those from FEM and
NS-PIM models. Hence, PIM-LSS can be tuned to provide both
lower and upper bounds of the exact solution. Furthermore, it
is found that there always exists a ‘‘best” order of fitting for
strain field such that an ultra-accurate solution can be obtained
using the PIM-LSS.

The paper is outlined as follows. Section 2 briefs the linear elas-
ticity, and Section 3 gives a briefing on NS-PIM. The idea of the
PIM-LSS is formulated in Section 4. The convergence and bound
properties of the PIM-LSS are presented and theoretically proven
in Sections 5 and 6. In Section 7, numerical examples are presented
and discussed to verify the theorems and properties of the PIM-LSS.
Conclusions are drawn in Section 8.
Fig. 1. Triangular elements and the smoothing cells using in NS-PIM.
2. Brief on basic equations of linearity elasticity [20]

Consider a 2D static elasticity problem governed by the equilib-
rium equation in the domain X bounded by C (C = Cu + Ct,
Cu \Ct = 0) as

LT
drþ b ¼ 0 in X; ð1Þ

where Ld is a matrix of differential operators defined as

Ld ¼
o

ox1
0 o

ox2

0 o
ox2

o
ox1

" #T

; ð2Þ

rT = (r11,r22,r12) is the vector of stresses, bT = (b1,b2) is the vector
of body forces.
The stresses relate the strains via the generalized Hook’s law:

r ¼ De; ð3Þ

where D is the matrix of material constants [20], and
eT = (e11,e22,2e12) is the vector of strains given by

e ¼ Ldu: ð4Þ

Essential boundary conditions are:

u ¼ u0 on Cu; ð5Þ

where uT = (u1,u2) is the vector of the displacement and u0 is the
vector of the prescribed displacements on the essential boundary
Cu. In this paper, we consider only homogenous essential boundary
conditions u0 = 0.

Natural boundary conditions are:

LT
nr ¼ T on Ct; ð6Þ

where T is the vector of the prescribed tractions on the natural
boundary Ct, and Ln is the matrix of unit outward normal which
can be expressed as

Ln ¼
nx1 0 nx2

0 nx2 nx1

� �T

: ð7Þ
3. Briefing on the NS-PIM [29,39]

In the node-based smoothed PIM (or NS-PIM), the problem do-
main is first discretized by a set of background triangular cells, as
shown in Fig. 1. The displacements in a cell are approximated using
PIM shape functions:

�uðxÞ ¼
X
i2ne

UiðxÞ�di; ð8Þ

where ne is the set of nodes of the local support domain containing
x, �di is a vector of displacements at this set of nodes, and

UiðxÞ ¼
wiðxÞ 0

0 wiðxÞ

� �
ð9Þ

is the matrix of the shape function for node i which are constructed
using the PIM procedure and hence is of Delta function property.

In carrying out the numerical integration, the problem domain
X is divided into smoothing domains Xk containing node k, as
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Fig. 2. Reconstructed strain ê and compatible strain ~e in smoothed domain Xk. The
constructed strain field ê should be proper projection of the compatible strains on a
space of lower dimension. Since the compatible strain field is discontinuous, it lives
in a space of very high (in fact infinite) dimension. Therefore, a lower order of
approximation is always possible.
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shown in Fig. 1. The smoothing domain Xk is constructed using a
triangular element mesh by connecting sequentially the mid-
edge-point P to the centroids I of the triangles. The boundary of
Xk is labeled as Ck and the union of all Xk forms X exactly.
NS-PIM uses constant strain for each of the smoothing domains
defined by [22]

�ek� �eðxkÞ

¼
1

Ak

R
Xk

~eðxÞdX¼ 1
Ak

R
Ck

Ln �udC when �u is continuous in Xk;
1

Ak

R
Ck

Ln �udC when �u is discontinuous in Xk;

(
ð10Þ

where Ak is the area of smoothing domain for node k, and here we
assume that �u is always continuous on Ck.

The Generalized smoothed Galerkin weak form can be written
as [22]Z

X
d�eTð�uÞD�eð�uÞdX�

Z
X

d�uTbdX�
Z

Ct

d�uTTdC ¼ 0: ð11Þ

Substituting Eq. (10) into Eq. (11) yields the discretized system
equation:

K �d ¼ �f; ð12Þ

where

K ¼
XN

k¼1

KðkÞij ¼
XN

k¼1

Z
Xk

BT
i ðxkÞDBT

j ðxkÞdX; ð13Þ

�f i ¼
Z

Ct

UiTdCþ
Z

X
UibdX: ð14Þ
4. The idea of the PIM-LSS

4.1. Choice of the shape functions

In the PIM-LSS, the point interpolation method (PIM) is used to
construct shape functions using a small set of nodes distributed in
a local support domain [20]. Note that background cells have to be
used for performing the numerical integration in meshfree meth-
ods and the triangular cells that are the most convenient and can
be generalized automatically. Therefore, the present PIM-LSS uses
the background cells of 3-node triangles for shape functions
construction as in the NS-PIM. The details on the construction
and detailed distribution of the PIM shape function can be found
in Ref. [29]. Using PIM shape functions, the displacement field in
the PIM-LSS can be approximated as follows:

ûðxÞ ¼
X
i2ne

UiðxÞd̂i; ð15Þ

where ne is the set of nodes in the support domain containing x, d̂i is
the vector of nodal displacements and Ui(x) is the matrix of the PIM
shape functions for node i as shown in Eq. (9).

The procedure for the shape function construction of PIM-LSS
is simple and possesses the following features: (1) it uses local
supporting nodes selected based on triangular cells, which over-
comes the singular moment matrix issue, and ensures the effi-
ciency in computing PIM shape function; (2) shape functions
generated using polynomial basis functions with at least linear
terms ensure that the PIM shape functions possess at least line-
arly consistency; (3) the shape functions are of the Delta function
property, which facilitates easy implementation of essential
boundary conditions; and (4) this set of shape functions are line-
arly independent and hence forms a basis for displacement field
construction.
4.2. Construction for assumed strain field

In the present PIM-LSS, the problem domain X is also divided
into a set of smoothing domains Xk as shown in Fig. 1. Each
smoothed domain Xk consists of M sub-domains Xk,i. The strain
within Xk,i is the compatible strain obtained using Eq. (4). We
now construct the smoothed strain using the least square tech-
nique [40,41]. By minimizing the sum of squared deviations,
PIM-LSS constructs a strain field that is one-piece and smooth in
the nodal domain Xk (see Fig. 2).

Consider now the assumed displacement field is continuous,
and hence the compatible strain ~e is defined in the problem do-
main. Let fuig

n
i¼1 be an independent sequence of functions that

can be used as a basis for strain field construction. We can then
construct a strain field based upon the compatible strain ~e using
a linear combination of the basis functions fuig

n
i¼1

ê ¼
Xn

i¼1

aiui ð16Þ

with the coefficients (a1,a2, . . . ,an) to be determined such that

dða1; a2; . . . ;anÞ � ðê� ~e;Dðê� ~eÞÞ ð17Þ

is minimized, where ê ¼ ðê11; ê22; ê12ÞT; ai ¼ ðai
11; a

i
22; a

i
12Þ

T.
In Eq. (17), the inner produce (�, �) of vector functions f and g is

defined by

ðf;gÞ ¼
Z

X
fTgdX ð18Þ

and the norm of f is defined by

kfk ¼
Z

X
fTf dX

� �1=2

: ð19Þ

Note that error function (17) is a little different from that in stan-
dard least square method defined by ðê� ~e; ê� ~eÞ, due to the intro-
duction of D in the formulation. However, because of the positivity
of elasticity constant matrix D, the error function d is still a qua-
dratic function of the variables ai, and hence has always one mini-
mum. Therefore, the procedure for calculating coefficient ai in
PIM-LSS is similar to that in the standard least square method.

Note both the constructed strain ê and the compatible strain ~e
are piecewise integral in entire problem domain. Substituting Eq.
(16) into (17) gives

d ¼ ðê� ~e;Dðê� ~eÞÞ ¼ ðê;DêÞ � 2ðê;D~eÞ þ ð~e;D~eÞ

¼
Xn

i¼1

aiui;D
Xn

r¼1

arur

 !
� 2

Xn

i¼1

aiui;D~e

 !
þ ð~e;D~eÞ ð20Þ
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and

od
oaj
¼ ujJ;D

Xn

i¼1

aiui

 !
þ

Xn

i¼1

aiui;DujJ

 !
� 2ðujJ;D~eÞ

¼ 2
Xn

i¼1

ðujJ;DaiuiÞ � 2ðujJ;D~eÞ

¼ 2 ujJ;D
Xn

i¼1

aiui � ~e

 ! !
¼ 2ðujJ;Dðê� ~eÞÞ

¼ 2
Xn

i¼1

ðujJ;DuiÞai � 2ðujJ;D~eÞÞ; ð21Þ

where, J is the 3rd order identity matrix. Hence, the minimum of d
must satisfy

od
oaj
¼ 0; j ¼ 1;2; . . . ;n: ð22Þ

Substituting Eq. (21) into (22) yieldsXn

i¼1

ðujJ;DuiÞai � ðujJ;D~eÞÞ ¼ 0; j ¼ 1;2; . . . ; n: ð23Þ

For the isotropic elastic materials, by direct computation, we know
that the solutions of Eq. (23) is exactly same as the solution of the
following equation:Xn

i¼1

ðuj;uiÞai ¼ ðujJ; ~eÞÞ; j ¼ 1;2; . . . ; n: ð24Þ

Therefore, when function sequence fuig
n
i¼1 is independent, Eq. (24)

has an unique solution faign
i¼1 which is termed as the least-square

approximation to compatible strain over the basis fuig
n
i¼1.

In actual computation, it is not easy to obtain the solution of Eq.
(24), especially when higher order fittings are used [40,41]. There-
fore, Gram–Schmidt orthogonalization procedure [42] is usually
used to simplify computation. Assume the space W is spanned
by the vectors fuig

n
i¼1, which are not necessarily orthogonal. An

orthogonal set of vector fUign
i¼1 can be obtained by the following

steps:

1. Normalize u1 by setting U1 = u1/ku1k;
2. Find the projection of u2 in the directions of U1, that is

(u2,U1)U1;
3. Subtract the projection of u2 on U1 from u2 and normalize the

result:

U2 ¼
z2

kz2k
; where z2 ¼ u2 � ðu2;U1ÞU1; ð25Þ

4. For the nth vector

Un ¼
zn

kznk
where zn ¼ un �

Xn�1

i¼1

ðun;UiÞUi; ð26Þ

5. Let the vector y = un+1 where space V is spanned by fUignþ1
i¼1 .

Then the next vector is given by

znþ1 ¼ y�
Xn�1

i¼1

ðy;UiÞUi: ð27Þ

Note that zn+1 is orthogonal to Ui for i 6 n.

Therefore, the best approximation of compatible strain is

ê ¼
Xn

i¼1

ðUiJ; ~eÞUi: ð28Þ

The overall procedure of strain field construction in the PIM-LSS is
as follows. The displacement at any point in a background cell is
first approximated via point interpolation using Eq. (15). The strains
within each of domains Xk are next constructed using Eqs. (16) and
(23). Therefore, the strain depends entirely on the assumed dis-
placement field, and no additional degrees of freedoms are intro-
duced. Furthermore, the dimension of the discretized system
equation in our PIM-LSS model will be exactly the same as the
FEM model of the same mesh.

5. Weak form for PIM-LSS

To formulate PIM-LSS, we construct a strain constructed Galer-
kin (or SC-Galerkin) functional for variational formulation as
follows:

PðvÞ ¼
Z

X

1
2
êTðvÞDêðvÞX�

Z
X

vTbdX�
Z

Ct

vTTdC: ð29Þ

Note that displacement v is the only unknown field in Eq. (29).
The stationary condition of Eq. (29) is

dPðvÞ ¼
Z

X
dêTðvÞDêðvÞX�

Z
X

dvTbdX�
Z

Ct

dvTTdC ¼ 0: ð30Þ

Substituting Eq. (16) into (30) leads to the discretized system equa-
tions as follows:

bKd̂ ¼ f̂; ð31Þ

where bK is the stiffness matrix, and

f̂ ¼ �
Z

X
UTbdXþ

Z
Ct

UTTdC: ð32Þ

Theorem 1 (Convergence theorem). The PIM-LSS based on Eq. (29)
is variationally consistent; and the solution obtained converges to the
exact solution of original strong form when the dimension of all the
cells approaches to zero, if the assumed displacement is continuous
over the problem domain.

Proof. When the assumed displacement is continuous over the
problem domain, from Section 4, we know that the constructed
strain field represents a mean value of the compatible strain in
nodal domain Xk in the least square. The constructed strain field
depends only on the assumed displacement field. Therefore, dis-
placement field is the only unknown field, and there is no increase
of unknown variables compared to the standard Galerkin
formulation.

Substituting êðvÞ into the Hellinger–Reissner’s two-field energy
functional [23–25], we have

PðvÞ ¼
Z

X
�1

2
êTðvÞDêðvÞXþ

Z
X
êTðvÞDðLdvÞdX

�
Z

X
vTbdX�

Z
Ct

vTTdC: ð33Þ

On the other hand, from (21) and (22), we can obtain

ðujJ;Dðê� ~eÞÞ ¼ 0; for all j ¼ 1;2; . . . ; n: ð34Þ

From (34), we haveXn

j¼1

ajuj;Dðê� ~eÞ
 !

¼ 0 ð35Þ

or

ðê;Dðê� ~eÞÞ ¼ 0; ð36Þ

where fajgn
j¼1 is obtained from Eq. (23).
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Eq. (36) can be written asZ
X
êTDêdX ¼

Z
X
êTD~edX; ð37Þ

which is the orthogonal condition required for variational consis-
tence [43]. Therefore, the PIM-LSS is variationally consistent, and
the substitution Eq. (37) into (33) leads to the energy functional
(29) for PIM-LSS.

In addition, it is well known that for any assumed strain field
the numerical solution obtained from the Hellinger–Reissner’s
two-field variational principle converges to real solution of
original strong form [23–25], as long as the stability of the
discrete model is ensured. Now, based on the analysis given in
[22,44], we know that the node-based smoothing domains are
linearly independent [44] and satisfy the minimum number of
smoothing domains [22]. Therefore, the PIM-LSS will be stable.
Therefore, the solution obtained using the PIM-LSS based on (29)
also converges to the real solution of original strong form. This
completes the proof. h

We have the following corollary.

Corollary 1. The stiffness matrix bK obtained using PIM-LSS is
symmetric, positive definite and has the same dimensions as that of
FEM when the same mesh is used.

Note that Theorem 1 has condition that the assumed displace-
ment is continuous over the problem domain. When PIM shape
function is not continuous, the proof of the convergence theorem
needs to be performed based on the G space theory [44].
6. Bound property of strain energy potential for the PIM-LSS

Theorem 2 (Projection theorem). Suppose the compatible strain
vector ~e exists in the problem domain and is in a finite dimensional
space S; strain vector ê obtained using the PIM-LSS is in the subspace
W of S spanned by u1,u2, . . . ,un. Then we have
ε~

ε̂

εε ~ˆ−

W

S

Fig. 3. Strain ê obtained using the least square procedure is an orthogonal projector
of ~e onto the subspace W spanned by u1,u2, . . . ,un. It is a ‘‘best” approximation to ~e
in sub-space W in the meaning of energy norm.
ð~e� ê;De0Þ ¼ 0 8e0 2W; ð38Þ
ð~e� ê;Dð~e� êÞÞ ¼ inf

e02W
ð~e� e0;Dð~e� e0ÞÞ; ð39Þ

which means that the constructed strain field is a ‘‘best” projection
from the compatible strain field.

Proof. From Section 4, we know that any strain vector in space W
can be represented as

e0 ¼
Xn

i¼1

biui; ð40Þ

where not all the vector bi (i = 1,2, . . . ,n) is zero vector.
In addition, from Eqs. (21) and (22), we have

ðujJ;Dð~e� êÞÞ ¼ 0 for all j ¼ 1;2; . . . ; n; ð41Þ

which indicates thatXn

j¼1

bjuj;Dð~e� êÞ
 !

¼ 0 ð42Þ

or

ð~e� ê;De0Þ ¼ 0: ð43Þ

On the other hand, for any e
0 2W we have

ð~e� e0;Dð~e� e0ÞÞ ¼ ð~e� êþ ê� e0;Dð~e� êþ ê� e0ÞÞ
¼ ð~e� ê;Dð~e� êÞÞ þ 2ð~e� ê;Dðê� e0ÞÞ þ ðê
� e0;Dðê� e0ÞÞ: ð44Þ
Note that e0 � ê 2W , and thus ð~e� ê;Dðê� e0ÞÞ ¼ 0 from Eq. (38).
Therefore, according to the positivity of elasticity constant matrix
D, we have

ð~e� e0;Dð~e� e0ÞÞ ¼ ð~e� ê;Dð~e� êÞÞ þ ðê� e0;Dðê� e0ÞÞ
P ð~e� ê;Dð~e� êÞÞ ð45Þ

or

k~e� êk 6 k~e� e0k 8e0 2W: ð46Þ

In Eq. (46), ‘‘=” stands if and only if e0 ¼ ê. Therefore, we have

ð~e� ê;Dð~e� êÞÞ ¼ inf
e02W
ð~e� e0;Dð~e� e0ÞÞ: ð47Þ

This completes the proof. h

A simple geometric interpretation to Theorem 2 is as follows.
Consider a compatible strain vector ~e in space S, and the sub-

space W of S spanned by u1,u2, . . . ,un. Of course, if ~e lies in W,
the solution is trivial. Generally, compatible strain vector ~e is not
in W. An important question is that which vector ê in W ‘‘best”
approximates ~e. One definition of ‘‘best” is that the energy error
norm ðê� ~e;Dðê� ~eÞÞ is a minimum. It is clear from Fig. 3 that
the error norm is minimized when ê is the projection of ~e onto W
in a direction perpendicular to W. Since ðê� ~e;Dðê� ~eÞÞ involves
squaring the length of the vector ~e, minimizing the norm of the er-
ror vector is referred to as a least square error criterion. Therefore,
strain ê is the projection of ~e (in the meaning of energy norm) onto
the subspace W spanned by u1,u2, . . . ,un.

Theorem 3 (Bound theorem). For any given continuous displace-
ment field v, if the strain field is obtained using Eqs. (16) and (23), and
discretized system equations is provided by Eqs. (29)–(32), we then
havebUðvÞ 6 eUðvÞ; ð48Þ

where, bUðvÞ is the strain energy obtained using the PIM-LSS given
by

bUðvÞ ¼ 1
2

Z
X
êTðvÞDêðvÞdX; ð49Þ

eUðvÞ is that using the FEM given by

eUðvÞ ¼ 1
2

Z
X

~eTðvÞD~eðvÞdX: ð50Þ

Proof. Using Eq. (36) and the positivity of D, we can easily obtain
that

ðê� ~e;Dðê� ~eÞÞ ¼ ðê;DêÞ � 2ðê;D~eÞ þ ð~e;D~eÞ
¼ ðê;DêÞ � 2ðê;DêÞ þ ð~e;D~eÞ
¼ ð~e;D~eÞ � ðê;DêÞP 0 ð51Þ

or
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Fig. 4. A 2D cantilever solid subjected to a parabolic traction on the right edge.
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ðê;DêÞ 6 ð~e;D~eÞ; ð52Þ

which completes the proof. h

Theorem 4. When the same set of shape functions is used, the strain
energy obtained from the PIM-LSS solution is no-less than that from
the FEM solution based on a fully compatible model:

1
2

d̂T bKd̂ P
1
2

~dT eK~d: ð53Þ

Proof. Eq. (48) can be written in discrete form of arbitrary nodal
displacement d as

1
2

dT bKd 6
1
2

dT ~Kd: ð54Þ

Therefore, it is clear that

1
2

dTðeK � bKÞd P 0; ð55Þ

which indicates that matrix ðeK � bKÞ is semi-positive definite. In
mechanics, it implies that bK is ‘‘softer” that eK. In addition, the dis-
crete solutions of FEM and PIM-LSS at their stationary points can be
written as

~d ¼ eK�1f; d̂ ¼ bK�1f; ð56Þ

where f is commonly defined by Eq. (32).
As the stiffness matrix bK and eK are symmetric, at the stationary

point we have the total energy as follows:

~Pð~dÞ¼ 1
2
~dT ~K~d� ~dTf¼�1

2
~dT ~K~d¼�1

2
~dTf¼�1

2 fT eK�1f¼�eUð~dÞ;
P̂ðd̂Þ¼ 1

2 d̂T bKd̂� d̂Tf¼�1
2 d̂T bKd̂¼�1

2 d̂Tf¼�1
2 fT bK�1f¼�bUðd̂Þ:

(
ð57Þ

The difference between the strain energies of FEM and PIM-LSS
solution becomes

eUð~dÞ � bUðd̂Þ ¼ 1
2

fTðeK�1 � bK�1Þf 6 0; ð58Þ

which givesbUðd̂ÞP eUð~dÞ: ð59Þ

This completes the proof. Note that the above proof is similar to that
given in [39]. h

Theorem 4 shows that the PIM-LSS will provide a more
‘‘softening” effect to system than FEM. In the following we
examine some special models of PIM-LSS using different fitting
orders.

When zero order fitting is used in Eq. (16), it is clear that n = 1,
u1 = 1 and ê is a constant in each nodal domain. Using Eq. (23) we
can rewrite the strain ê asZ

Xk

êdX ¼
Z

Xk

~edX ð60Þ

or

ê ¼ 1
Ak

Z
Xk

~edX; ð61Þ

which is exactly the same as that in NS-PIM, where Ak is the area of
domain Xk.

Corollary 2. The PIM-LSS with zero order fitting is exact the NS-PIM;
and for any practical model with a reasonable number of elements, it
will produce an upper bound solution in energy norm.

The proof of Corollary 2 is similar to that in Ref. [39], and thus
omitted.
On the other hand, Theorem 2 indicates that strain ê will ap-
proach to the compatible strain ~e when subspace W approaches
to the space S. Therefore, there exist a proper order of fitting such
that strain field ê obtained using PIM-LSS approaches the compat-
ible strain field ~e.

Corollary 3. When finite order fittings are used, strain energy
obtained using the PIM-LSS lies in between those of the compatible
FEM model and the NS-PIM model when the same mesh is used.
Furthermore, there exists a preferred order of fitting for strain field
such that ultra-accurate solution can be obtained using the PIM-LSS.

A preferred order of fitting for strain field is usually problem-
dependent and also mesh-dependent. And hence it requires a
number of trials-of-error to find that. Therefore, in real computa-
tion, we often use low order fittings, such as first order or sec-
ond order polynomials models. The convergence and bound
properties of these models will be examined in the following
sections.
7. Numerical examples

In this section, a number of numerical examples will be exam-
ined using the PIM-LSS with both linear and quadratic displace-
ment field. To investigate quantitatively the numerical results,
the error indicators in both displacement and energy norms are de-
fined as follows:

Ed ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðuref

i � unum
i Þ2Pn

i¼1ðuref
i Þ

2

vuut ; ð62Þ

Ee ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUnum � Uref j

Uref

s
ð63Þ

where the superscript ref denotes the reference or analytical solu-
tion, num denotes a numerical solution obtained using a numerical
method.

For the 2D problems, the following polynomial bases termed,
respectively, as zero order, half-linear, linear, bilinear, quadratic
fitting bases

u1 ¼ 1; ð64Þ
u1 ¼ 1; u2 ¼ xy; ð65Þ
u1 ¼ 1; u2 ¼ x; u3 ¼ y; ð66Þ
u1 ¼ 1; u2 ¼ x; u3 ¼ y; u4 ¼ xy; ð67Þ
u1 ¼ 1; u2 ¼ x; u3 ¼ y; u4 ¼ xy; u4 ¼ x2; u4 ¼ y2 ð68Þ

are used to examine the convergence property of PIM-LSS. Note
that we have total freedom to choose the basis functions for
our strain field construction, as long as they are linearly indepen-
dent. We need not worry about the completeness, which is on
the hand known important in the displacement field construction
[20,21].
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7.1. Cantilever 2D solid

A 2D cantilever solid with length L = 50 m and height D = 10 m
is now studied. The solid is subjected to a parabolic traction at the
right end as shown in Fig. 4. The cantilever beam is studied as a
plane stress problem with E = 3.0 � 107 Pa, P = �1000 N and
v = 0.3. Analytical solutions of this problem can be found in Ref.
[45].

The displacement error of PIM-LSS with linear displacement
field is first investigated and plotted in Fig. 5. When zero order
model (64) and half-linear model (65) are used, the solutions from
PIM-LSS have the almost-equal convergence rate and accuracy
with linear FEM. However, when the higher order fittings are used,
the convergent rates are respectively about 2.98 for linear fitting,
3.11 for bilinear fitting and 3.00 for quadratic fitting, which are
much higher than the theoretical value of 2.0 for linear and bilinear
FEM. Furthermore, higher convergent accuracy, which is 10 times
more accurate than that of linear FEM, is also found for PIM-LSS
using three higher order models.

Using Eq. (63), the energy error of PIM-LSS with linear displace-
ment field is computed and plotted in Fig. 6. It is seen that the con-
vergence rates in energy norm are, respectively, 1.6, 1.44 and 1.45
when linear, bilinear and quadratic polynomial bases are used,
which is much higher than the theoretical value of 1.0 for linear
and bilinear FEM. These examples show clearly the very high accu-
racy and excellent superconvergence of the PIM-LSS with higher
order models.

The strain energy of PIM-LSS with linear displacement field is
computed and plotted in Fig. 7. It is seen that PIM-LSS can produce
the upper bound solution for zero order and half-linear fitting, and
can produce lower bound solutions for the three higher order mod-
els. Furthermore, the strain energy from these models is in be-
tween those from the compatible FEM and the NS-PIM. In
addition, it is found that the PIM-LSS solution approaches the
FEM solution with an increase of order of fitting for reproduced
strain. These findings verify the bound properties detailed in Sec-
tion 6.

7.2. Infinite 2D solid with a circular hole

An infinite 2D solid with a central circular hole (a = 1 m) and
subjected to a unidirectional tensile (Tx = 10 N/m) is studied. Ow-
ing to its two-fold symmetry, one quarter is modeled with
b = 5 m (as shown in Fig. 8). Symmetry conditions are imposed
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Fig. 8. Infinite 2D solid with a hole subjected to a tensile force and its quarter
model.
on the left and bottom edges of the quarter model, and the inner
boundary of the hole is traction free. For this benchmark problem,
the analytical solution can be found in Ref. [45].

To study the convergence property of the PIM-LSS solution, the
model with ‘‘nearly” regularly distributed nodes has been ana-
lyzed, and corresponding nodal distribution and background mesh
is shown in Fig. 9. First, the strain energy of PIM-LSS with linear
displacement field is computed and plotted in Fig. 10. It is see that
PIM-LSS has upper and lower bounds solutions of the exact solu-
tion for different fitting orders. Furthermore, the strain energy
for these models is in between that from the compatible FEM solu-



Fig. 9. Nodal distribution and background mesh for the quarter model of 2D solid
with a hole.
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tion and the NS-PIM solution. It also shows that the solution from
PIM-LSS will approach the solution of FEM with an increase of or-
ders of polynomial fitting. These findings verify again the bound
properties of PIM-LSS.

Using Eqs. (62) and (63), errors in displacement and energy
norms are computed and plotted against the average nodal spacing
(h) as shown in Figs. 11 and 12. When linear, bilinear and quadratic
fittings are used, the convergence rates for PIM-LSS in displace-
ment norm are about 2.12, which is a litter higher than the theoret-
ical value 2.0 of linear FEM. However, the convergent rates in
energy norm are about 1.5 for three higher order models and obvi-
ously much higher than the theoretical value 1.0 of linear FEM.

We now test the convergence properties of PIM-LSS to the
incompressible material. In this case, this infinite solid with a cir-
cular hole problem is studied as a plane strain problem, and the ef-
fects of Poisson’s ratio on the convergence of PIM-LSS are
examined. Fig. 13 plots the displacement error norm versus differ-
ent Poisson’s ration for the models of PIM-LSS. The results show
that the PIM-LSS with zero order fitting avoids the volumetric lock-
ing naturally; while three higher order models are subjected to the
volumetric locking. Furthermore, the more order models are used,
the more sensitive is exhibited for PIM-LSS to the change of Pois-
son’s ratio. Therefore, for the incompressible material, PIM-LSS
with zero order fitting is a good candidate.



Fig. 15. Stress stresses solution rxy of linear FEM for the infinite 2D solid with hole.

Fig. 16. Stress stresses solution rxy of NS-PIM for the infinite 2D with hole.
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Note that in the PIM-LSS, the strain obtained using least square
is actually the average over the sub-domains sharing the same field
node. Therefore, the nodal average of element stresses, which is
usually used in the standard FEM, has actually been made and
hence one does not need such post-processing procedure and
avoids the extra computations of strain predictions and contour
plotting of stresses. A comparison of contour plotting of stresses
between FEM, NS-PIM and PIM-LSS with linear fitting is made in
from Figs. 14–17, which shows that PIM-LSS produce the more
accurate and more smoothed stresses solutions.

7.3. Semi-infinite plate

A two-dimensional half space subjected to a uniform pressure
on the upper surface within a finite range (�a 6 x 6 a) is studied
(see Fig. 18). Plane strain condition is considered and the analytical
solutions can be found in Ref. [45]. Due to the symmetry about y-
axis, the problem is modeled with a 5a � 5a square with a = 0.2 m,
c = 100 and p = 1 MPa. The left and bottom sides are constrained
using exact displacement while the right side is subjected to trac-
tions computed form the analytical solutions. The nodal distribu-
tion and background mesh of this model is shown in Fig. 19.

Fig. 20 shows the strain energy obtained using the PIM-LSS with
linear displacement field for different strain fitting orders. It is
clear that PIM-LSS has upper and lower bound solutions of the ex-
act solution when the different fitting orders for strain construc-
tion are used. Furthermore, the strain energy for these models is
no-less than that from the compatible FEM solution, and no-larger
than the strain potential from the NS-PIM.

Using Eqs. (62) and (63), errors in displacement and energy
norms are calculated and plotted in Figs. 21 and 22. It is seen that
the convergence rate in displacement norm for the PIM-LSS is a lit-
tle higher than that of the FEM solution. However, the convergence
rate in energy norm is respectively about 1.57, 1.42, 1.34 for three
higher order models, which is much higher than the theoretical va-
lue 1.0 of linear FEM. This clearly shows the superconvergence in
energy norm.

7.4. Square solid subjected to uniform pressure and body force

A square solid is now studied as shown in Fig. 23. The solids are
constrained on the left, the right, and the bottom edges, and suffer-
ing from uniform pressure along the top edge and body force of
Fig. 14. Reference stresses solution rxy for the infinite 2D solid with hole. Fig. 17. Stress stresses solution rxy of PIM-LSS with linear fitting for the strain field.
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Fig. 18. Semi-infinite two-dimensional solid subjected to a uniform pressure on the
surface.

Fig. 19. Nodal distribution and background mesh for the semi-infinite two-
dimensional solid.
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Fig. 20. Strain energy of the PIM-LSS for a two-dimensional half space subjected to
a uniform pressure.
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bT = {0,�1}. It is considered as plane stress problem with v = 0.3
and E = 3.0 � 107 Pa.

The convergence property and energy bound for PIM-LSS with
linear displacement field for different orders of strain fittings are
also investigated in a similar way as in the previous examples. As
the analytical solution is not available for this problem, the refer-
ence solution of strain energy is obtained using the FEM with a
very fine mesh (8238 nodes). The computed strain energy and con-
vergent rate in energy norm are plotted in Figs. 24 and 25, respec-
tively. It is seen again that the linear PIM-LSS produces very high
accurate solution in energy norm with a convergent rate of 1.22
for quadratic model and 1.24 for linear model, respectively.
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Fig. 26. The Lame problem of a hollow sphere under internal pressure.
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Fig. 27. Strain energy of the PIM-LSS with different fitting orders for the strain
construction for 3D Lame problem. It shows that PIM-LSS can produce the upper
and lower bound solutions and the strain energy from PIM-LSS is in that between
from NS-PIM and FEM solution.
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Fig. 28. Convergence of PIM-LSS solution in energy norm for different fitting orders
used in the 3D Lame problem. It shows that the higher order fitting have better
convergence properties.
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7.5. The 3D Lame problem

The 3D Lame problem consists of a hollow sphere with inner
radius a and outer radius b and subjected to internal pressure P,
as shown in Fig. 26. For this benchmark problem, the analytical
solution is available in polar co-ordinate system [45]. As the
problem is spherically symmetrical, only one-eighth of the
sphere is modeled and symmetry conditions are imposed on
the three planes of symmetry. The numerical solution of this
problem has been calculated using the material parameters
E = 1.0 kPa, m = 0.3, geometric parameters a = 1 m, b = 2 m and
internal pressure P = 1 N/m2.

To investigate the properties of convergence and efficiency of
the present PIM-LSS, we compute the strain energy of PIM-LSS
with linear displacement field for different orders of strain fittings
as shown in Fig. 27. For comparison, the FEM using linear four-
node tetrahedron element is also employed to study the problem
with the same nodes distributions. It is clear that PIM-LSS has
upper and lower bound solutions of the exact solution when the
different fitting orders for strain construction are used. Further-
more, the strain energy for these models is no-less than that from
the compatible FEM solution, and no-larger than the strain poten-
tial from the NS-PIM. In addition, the error in energy norm against
the average nodal spacing of the nodes distribution (h) are plotted
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Fig. 30. Displacement error of the PIM-LSS solution with quadratic displacement
field, it clearly shows very high accuracy and convergent rates of the PIM-LSS with
higher order models.
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Fig. 31. Energy error of the PIM-LSS solution with quadratic displacement field, it
clearly shows very high accuracy and convergent rates of the PIM-LSS with higher
order models.
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in Fig. 28 for both the FEM and the four fitting models of PIM-LSS. It
is found obviously that the higher order fitting for strain construc-
tion produces more accurate results, which are even about 10
times more accurate than that of linear FEM using the same nodal
distributions.

7.6. PIM-LSS with high order polynomials interpolation

We now examine the 2D cantilever beam detailed in Section 7.1
using PIM-LSS with quadratic polynomials displacement field. A
simple scheme [29] for local supporting node selection is adopted
based on the background triangular cells for shape function con-
struction. The background triangular cells are classified into two
groups: interior cells and edge cells. An interior cell is a cell that
has no edge on the boundary of the problem domain, and an edge
cell is a cell that has at least one edge on the boundary of the prob-
lem domain. When the point of interest is located in an interior
cell, we use six nodes for interpolation: three nodes located at
the vertices of this cell, and the other three nodes located at the re-
mote vertices of the three neighboring cells. The details on con-
struction of quadratic PIM shape function based on triangular
cells can be found in Ref. [29]. To study the convergence property
of the PIM-LSS, the strain energy of PIM-LSS with quadratic dis-
placement field for different fitting orders for strain construction
is calculated in Fig. 29. It is clearly seen that PIM-LSS produces
upper and lower bound solutions of the exact solution. Using
Eqs. (62) and (63), errors in displacement and energy norms are
calculated and plotted in Figs. 30 and 31. From these figures, it is
observed that the very high accuracy and convergence rates in dis-
placement norm and energy norm are obtained. This example
shows clearly that the incompatible PIM shape functions can be
used in our PIM-LSS model: a typical weakened weak (W2) formu-
lation [44].

Note that compared with the solutions using linear PIM shape
functions, the solution using quadratic PIM shape functions are
not necessarily better. This may be because of (1) the linear PIM
performed already very good; (2) the smoothed strains are ob-
tained using the Heaviside step smoothing function, which limits
the order of accuracy.

7.7. Computational efficiency of PIM-LSS

Corollary 1 in Section 5 shows that the stiffness matrix ob-
tained using PIM-LSS is symmetry, positive definite and has
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Fig. 29. Strain energy of the PIM-LSS with quadratic displacement field for 2D beam
problem. This example shows that PIM-LSS can produce the upper and lower bound
solutions and the strain energy from PIM-LSS is in that between from NS-PIM
solution and FEM solution.
the same dimensions as that of FEM when the same mesh is
used. This is because PIM-LSS has not introduced any extra un-
known variables compared to the FEM. Considering the extra
computing cost in computing the strain field for establishing
the stiffness matrix, PIM-LSS will take more computation time
compared to the FEM. However, when an iterative solver is used,
the PIM-LSS equations can be solved more efficiently because of
the better conditioning in stiffness matrix due to the softening
effects. Furthermore, the much higher accuracy and convergence
of PIM-LSS will result in a higher computational efficiency com-
pared to the FEM.

For a fairer comparison, we now produce the efficient curve:
CPU time taken for the solution with same accuracy. Figs. 32 and
33 plot respectively the energy and displacement errors against
the CPU times used by FEM and PIM-LSS with different fitting or-
ders. In this comparison, full matrix solver is used. It is clear that
for the same CPU time PIM-LSS with linear and bilinear fitting
can obtain solution of higher accuracy; and for the same accuracy
in solution PIM-LSS for linear and bilinear fitting needs less CPU
times than that from FEM. Therefore, the PIM-LSS with the linear
and bilinear fitting has more efficient than that the FEM models
with the same nodal distributions.
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Fig. 32. Comparisons of efficiency between FEM and PIM-LSS in displacement
norm.
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Fig. 33. Comparisons of computational efficiency between FEM and PIM-LSS in
energy norm.
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7.8. Discussion on PIM-LSS

Note that the least square techniques have been often used in
formulating meshfree methods [21] and other numerical methods
such as the ‘‘least square point interpolation method” formulated
in Refs. [46,47]. In these methods, the least square technique is
used to approximate the displacement fields. In the present PIM-
LSS, however, the least square fitting technique is used to construct
stain field. This may be one of the distinct features of the present
PIM-LSS.

In this paper, the polynomial PIM shape functions are used for
establishing the assumed displacement field. Other types of shape
functions such as the RPIM shape functions [16,33,48] and the Kri-
ging formulation [17–19,49] can also be used for the displacement
filed assumption. The incompatibility of these shape functions will
not affect the stability and the convergence of the PIM-LSS. Note
that the RPIM and the Kriging are essentially the same as proven
in [18].

In the present PIM-LSS, the least square technique is used to
construct the strain field in each nodal domain. This is different
from the ‘‘assumed strain” methods such as the ‘‘quasi-conforming
technique” [50]. First, our PIM-LSS is basically still an ‘‘assumed
displacement” or displacement methods, because the only un-
known field in the PIM-LSS is the displacement field, and the con-
struction of the strain field is entirely depends on the assumed
displacement field. Second, our strain field construction is based
on nodal domains not on elements. We use meshes in an inter-
twined fashion: displacement field assumption is based on cells/
elements, and strain field construction is based on nodes: a typical
W2 formulation [44]. Third, our PIM-LSS works very well for trian-
gular mesh, due largely to the intertwined cells/domain structure
that offers the important softness to the model [22,44]. Forth,
PIM-LSS does not introduce any addition degrees of freedoms in
any way.

8. Conclusions

In this work, we develop a least square point interpolation
method (PIM-LSS), where the PIM shape functions are used to con-
struct the assumed displacement field and the least square tech-
nique for strain field construction based on the assumed
displacement field. The PIM-LSS can construct strain fields of de-
sired order including the zero-order approximation used in the
NS-PIM, and therefore can be considered as a high order extension
of the NS-PIM with more general foundation of projection theory.
We proved theoretically: (1) The PIM-LSS is variational consistent,
stable and hence convergent. (2) When the same mesh is used the
strain energy obtained using the PIM-LSS is in between those from
the compatible FEM and the NS-PIM models. (3) The exact solution
can usually be bounded by the PIM-LSS solutions with strain field
of both lower order and higher order fittings. (4) There exists a
proper order polynomial fitting such that the PIM-LSS produce
the ultra-accurate solutions. (5) The PIM-LSS works very well with
triangular mesh. Intensive numerical studies have verified the the-
orems, convergence, bounds property of strain energy, and ultra-
accuracy of the PIM-LSS.
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